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Abstract

In machine translation (MT) that involves translating between
two languages with significant differences in word order, de-
termining the correct word order of translated words is a ma-
jor challenge. The dependency parse tree of a source sentence
can help to determine the correct word order of the translated
words. In this paper, we present a novel reordering approach
utilizing a neural network and dependency-based embeddings
to predict whether the translations of two source words linked
by a dependency relation should remain in the same order or
should be swapped in the translated sentence. Experiments on
Chinese-to-English translation show that our approach yields
a statistically significant improvement of 0.57 BLEU point on
benchmark NIST test sets, compared to our prior state-of-the-
art statistical MT system that uses sparse dependency-based
reordering features.

Introduction

In a machine translation (MT) system, determining the cor-
rect word order of translated words is crucial as word or-
der reflects meaning. As different languages have different
ordering of words, reordering of words is required to pro-
duce the correct translation output. Reordering in MT re-
mains a major challenge for language pairs with a significant
word order difference. Phrase-based MT systems (Koehn,
Och, and Marcu 2003), which achieve state-of-the-art per-
formance, generally adopt a reordering model based on the
span of a phrase and the span of its adjacent phrase (Till-
mann 2004; Koehn et al. 2005; Galley and Manning 2008).

Incorporating the dependency parse tree of an input
(source) sentence is beneficial for reordering, as the de-
pendency tree captures the relationships between words in
a sentence, through the dependency relation label between
two words. The dependency parse tree of a source sen-
tence can be utilized in reordering integrated within phrase-
based statistical MT (SMT), by defining dependency-based
features in the SMT log-linear model (Chang et al. 2009;
Hadiwinoto, Liu, and Ng 2016).

Recently, neural networks have been applied to natu-
ral language processing (NLP) to minimize feature engi-
neering and to utilize continuous word representation. It
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has found application in MT reordering, applied in the re-
ranking of translation output candidates (Li et al. 2014;
Cui, Wang, and Li 2016) and in the pre-ordering approach
(reordering the source sentence before translation) (de Gis-
pert, Iglesias, and Byrne 2015; Miceli-Barone and Attardi
2015). Nevertheless, reordering integrated with translation
has not benefited from the neural approach.

In this paper, we propose applying a neural network (NN)
model in reordering integrated within translation. We apply
our neural classifier on two words linked by a dependency
relation link, either a head-child or sibling link, in order to
predict if two words need to be swapped in the translation.
The prediction is used to guide the decoding process of state-
of-the-art phrase-based SMT.

A Neural Classifier for Dependency-Based

Reordering

We propose two neural classifiers, one to predict the correct
order of the translated target words of two source words with
a head-child relation, and the other for two source words
with a sibling relation. Each binary classifier takes a set of
features related to the two source words as its input and pre-
dicts if the translated words should be swapped (positive) or
remain in order (negative).

Input Representation

The head-child classifier predicts the order of the translated
words of a source word xc and its head word xh (where xg

is the head word of xh) using the following input features:
• The head word xh, its part-of-speech (POS) tag T (xh),

and the dependency label L(xh) linking xh to xg

• The child word xc, its POS tag T (xc), and the dependency
label L(xc) linking xc to xh

• The signed distance d(xh, xc) between the head and the
child in the original source sentence, with the following
possible values:
– −2 if xc is on the left of xh and there is at least one

other child between them
– −1 if xc is on the left of xh and there is no other child

between them
– +1 if xc is on the right of xh and there is no other child

between them
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(a) (b)

Pair Head Child, if left Child, if right Dist. Punct. Label
xh T (xh) L(xh) xc T (xc) L(xc) xc T (xc) L(xc) d(xh, xc) ω(xh, xc)

(2, 1) shuo VV root ta PN nsubj NULL NULL NULL −1 0 0
(2, 8) shuo VV root NULL NULL NULL chongyu VA ccomp +2 1 0
(6, 5) shang LC loc shichang NN lobj NULL NULL NULL −1 0 1

(c)

Pair Left child Right child Head Punct. Label
xl T (xl) L(xl) d(xh, xl) xr T (xr) L(xr) d(xh, xr) xh T (xh) ω(xl, xr)

(1,8) ta PN nsubj −1 chongyu VA ccomp +2 shuo VV 1 0
(4,6) muqian NT tmod −2 shang LC loc −2 chongyu VA 0 0
(6,7) shang LC loc −2 gongyou NN nsubj −1 chongyu VA 0 1

(d)

Figure 1: Illustration: (a) neural network classifier architecture with two hidden layers; (b) an aligned Chinese-English parallel
sentence pair; and sample extracted training instances and features for (c) head-child classifier and (d) sibling classifier. The
label 1 or 0 indicates whether the two words need to be swapped or kept in order, respectively.

– +2 if xc is on the right of xh and there is at least one
other child between them

• A Boolean ω(xh, xc) to indicate if any punctuation sym-
bol, which is also the child of xh, exists between xh and
xc

The sibling classifier predicts the order of the translated
words of two source words xl and xr, where xl is to the left
of xr and both have the common head word xh, using the
following features:
• The left child word xl, its POS tag T (xl), the dependency

label L(xl) linking xl to xh, and the signed distance to its
head d(xh, xl)

• The right child word xr, its POS tag T (xr), the depen-
dency label L(xr) linking xr to xh, and the signed dis-
tance to its head d(xh, xr)

• The head word xh and its POS tag T (xh)

• A Boolean ω(xl, xr) to indicate if any punctuation sym-
bol, which is also the child of xh, exists between xl and
xr

Feed-Forward Layers

As shown in Figure 1a, the classifier is a feed-forward neu-
ral network whose input layer contains the features. Each
feature is mapped by a lookup table to a continuous vec-
tor representation, and the resulting vectors are concate-
nated and fed into (multiplied by) a series of hidden lay-
ers (weight matrices) using the rectified linear activation

function, relu(x) = max(0, x). Given the hidden-layer-
transformed embedding vector x, a weight vector W, and
a bias value b, the prediction output σ is defined as:

z = W · x+ b (1)

σ(z) =
1

1 + e−z
(2)

We initialize the hidden layers and the embedding layer
for non-word features (POS tags, dependency labels, and
Boolean indicators) by a random uniform distribution. For
word features xh, xc, xl, and xr, we initialize their em-
beddings by the dependency-driven embedding scheme of
(Bansal, Gimpel, and Livescu 2014). This scheme is a mod-
ified skip-gram model, which given an input word, predicts
its context (surrounding words), resulting in a mapping such
that words with similar surrounding words have similar con-
tinuous vector representations (Mikolov et al. 2013). Simi-
larly, defining the dependency information (i.e., label, head
word, and child word) as context produces a mapping such
that words with similar head and child words have similar
continuous vector representations.

Dependency-driven embedding can be obtained from a
dependency-parsed corpus, where each training instance is
formulated as (note: xg is the head of xh):

L(xh)<GL> xg<G> xh xc L(xc)<L>

The skip-gram model is trained with a window size of 1 (de-
noting one context item on the left and one on the right).
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Following (Bansal, Gimpel, and Livescu 2014), the items
marked by <> subscripts serve as the context, have differ-
ent continuous vector representations from the words (xh

and xc), and are filtered out from the embedding vocabulary
after training.

Neural Network Training

The training instances for the neural classifiers are obtained
from a word-aligned parallel corpus. Two source-side words
with head-child or sibling relation are extracted with their
corresponding order label, swapped or in order, depending
on the positions of their aligned target-side words. Figure
1 shows the training instances extracted with their corre-
sponding features. For the head-child classifier, the features
containing the child information are distinguished based on
whether the child is on the left or right of the head.

The NN classifiers are trained using back-propagation to
minimize the cross-entropy objective function:

L = − 1

T

T∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) (3)

where xi is the i-th training instance, yi is its corresponding
label (1 for swapped and 0 for in order), and ŷi is the clas-
sifier prediction probability for swapped. To prevent model
overfitting, we used the dropout strategy (Srivastava et al.
2014) on the input embedding layer.

Reordering in Phrase-Based SMT

We adopt the phrase-based SMT approach, using a beam
search decoding algorithm (Koehn 2004a). Each source
phrase and one of its possible translations represent an al-
ternative in the search for the translated sentence. While the
search produces translation from left to right in the transla-
tion output order, it picks the source phrases in any order
to enable reordering for a language pair with different word
order. The translation output is picked based on a score com-
puted by a log-linear model, comprising the weighted sum
of feature function values (Och and Ney 2002).

A phrase-based SMT system typically includes a
distance-based reordering penalty (DBR) (Koehn, Och,
and Marcu 2003), to discourage long-distance reordering,
and phrase-based reordering models (PBRM). The latter
comprises the phrase-based lexicalized reordering (PBLR)
model (Tillmann 2004; Koehn et al. 2005) and the hierar-
chical reordering (HR) model (Galley and Manning 2008).
These models are the conventional reordering models widely
used in phrase-based SMT.

Dependency-Based Decoding Features

Phrase-based decoding can take into account the source de-
pendency parse tree to guide its search. To encourage struc-
tural cohesion during translation, we add a dependency dis-
tortion penalty (DDP) feature (Cherry 2008) to discourage
translation output in which the translated words of a phrase
in a source dependency parse subtree are split.

We also incorporate the sparse dependency swap (DS)
features of our prior work (Hadiwinoto, Liu, and Ng 2016).

The features involve considering a source word x being
translated during beam search and each of the as yet untrans-
lated source words x′, where x′ is the head, the child, or the
sibling of x in the source dependency parse tree. x′ can be
on the left of x in the source sentence, resulting in x and x′
being swapped in the translation output; or x′ can be on the
right of x, resulting in x and x′ following the same order
(in order). This principle is used to guide word pair transla-
tion ordering through sparse feature templates for head-child
word pair and sibling word pair, in which each word x in
a word pair is represented by its dependency label (L(x)),
POS tag (T (x)), and their combination.

Specifically, the sparse dependency swap (DS) features
of (Hadiwinoto, Liu, and Ng 2016) are based on a fea-
ture template for a head word xh and its child word
xc, their dependency labels and POS tags, whether xh

is on the p ∈ {left, right} of xc in the source sen-
tence, and the ordering of the pair in the translation output
o ∈ {in order, swapped}:

Hhc(xh, xc, p, o) =

⎡
⎢⎣

hhc(L(xh), L(xc), p, o)
hhc(T (xh), T (xc), p, o)
hhc(L(xh), T (xc), p, o)
hhc(T (xh), L(xc), p, o)

⎤
⎥⎦ (4)

Similarly, there is another feature template for two sibling
words, xl on the left of xr sharing a common head word,
their dependency labels and POS tags, and the ordering of
the pair in the translation output o ∈ {in order, swapped}:

Hsib(xl, xr, o) =

⎡
⎢⎣

hsib(L(xl), L(xr), o)
hsib(T (xl), T (xr), o)
hsib(L(xl), T (xr), o)
hsib(T (xl), L(xr), o)

⎤
⎥⎦ (5)

Incorporating Neural Classifier

We incorporate the neural classifier by defining one decod-
ing feature function for the head-child classifier, and another
decoding feature function for the sibling classifier. We also
employ model ensemble by training multiple head-child and
sibling classifiers, each with a different random seed for
hidden layer initialization. Within the log-linear model, the
value of each neural classifier feature function is its predic-
tion log-probability. Each feature function is assigned a dif-
ferent weight obtained from tuning on development data.

Experimental Setup

Data Set and Toolkits

We conducted experiments on a phrase-based Chinese-to-
English SMT system built using Moses (Koehn et al. 2007).
Our parallel training corpora are from LDC, which we divide
into older corpora1 and newer corpora2. Due to the dominant

1LDC2002E18, LDC2003E14, LDC2004E12, LDC2004T08,
LDC2005T06, and LDC2005T10.

2LDC2007T23, LDC2008T06, LDC2008T08, LDC2008T18,
LDC2009T02, LDC2009T06, LDC2009T15, LDC2010T03,
LDC2013T11, LDC2013T16, LDC2014T04, LDC2014T11,
LDC2014T15, LDC2014T20, and LDC2014T26.
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older corpora, we duplicate the newer corpora of various do-
mains ten times to achieve better domain balance. To reduce
the possibility of alignment errors, parallel sentences in the
corpora that are longer than 85 words in either Chinese (af-
ter word segmentation) or English are discarded. In the end,
the final parallel texts consist of about 8.8M sentence pairs,
228M Chinese tokens, and 254M English tokens (a token
can be a word or punctuation symbol). We also added two
dictionaries3, having 1.81M Chinese tokens and 2.03M En-
glish tokens in total, by concatenating them to our training
parallel texts. To train the Chinese word embeddings as de-
scribed above, we concatenate the Chinese side of our paral-
lel texts with Chinese Gigaword version 5 (LDC2011T13),
resulting in 2.08B words in total.

All Chinese sentences in our experiment are first word-
segmented using a maximum entropy-based Chinese word
segmenter (Low, Ng, and Guo 2005) trained on the Chinese
Treebank (CTB) segmentation standard. Then the parallel
corpus is word-aligned by GIZA++ (Och and Ney 2003)
using IBM Models 1, 3, and 4 (Brown et al. 1993)4. For
building the phrase table, which follows word alignment, the
maximum length of a phrase is set to 7 words for both the
source and target sides.

The language model (LM) is a 5-gram model trained on
the English side of the FBIS parallel corpus (LDC2003E14)
and the monolingual corpus English Gigaword version 4
(LDC2009T13), consisting of 107M sentences and 3.8B to-
kens altogether. Each individual Gigaword sub-corpus5 is
used to train a separate language model and so is the En-
glish side of FBIS. These individual language models are
then interpolated to build one single large LM, via perplex-
ity tuning on the development set.

Training the neural reordering classifier involves LDC
manually-aligned corpora, from which we extracted 572K
head-child pairs and 1M sibling pairs as training instances6,
while retaining 90,233 head-child pairs and 146,112 sibling
pairs as held-out tuning instances7. The latter is used to pick
the best neural network parameters.

Our translation development set is MTC corpus version 1
(LDC2002T01) and version 3 (LDC2004T07). This devel-
opment set has 1,928 sentence pairs in total, 49K Chinese
tokens and 58K English tokens on average across the four
reference translations. Weight tuning is done by using the
pairwise ranked optimization (PRO) algorithm (Hopkins and
May 2011).

We parse the Chinese sentences by the Mate parser,
which jointly performs POS tagging and dependency pars-
ing (Bohnet and Nivre 2012), trained on Chinese Treebank
(CTB) version 8.0 (LDC2013T21).

Our translation test set consists of the NIST MT evalua-
tion sets from 2002 to 2006, and 20088.

3LDC2002L27 and LDC2005T34.
4The default when running GIZA++ with Moses.
5AFP, APW, CNA, LTW, NYT, and Xinhua
6LDC2012T20, LDC2012T24, LDC2013T05, LDC2013T23,

LDC2014T25, LDC2015T04, and LDC2015T18.
7LDC2012T16.
8LDC2010T10, LDC2010T11, LDC2010T12, LDC2010T14,

Baseline System

Our phrase-based baseline SMT system includes the con-
ventional reordering models, i.e., distance-based reordering
penalty (DBR) and phrase-based reordering model (PBRM),
both phrase-based lexicalized reordering (PBLR) and hierar-
chical reordering (HR). We also use the dependency-based
reordering features, including the distortion penalty (DDP)
feature and the sparse dependency swap (DS) features.

To constrain the decoding process, we set punctuation
symbols as reordering constraint across which phrases can-
not be reordered, as they form the natural boundaries be-
tween different clauses. In addition, a distortion limit is set
such that reordering cannot be longer than a certain distance.
To pick the translation output, we also use n-best minimum
Bayes risk (MBR) decoding (Kumar and Byrne 2004) in-
stead of the default maximum a-posteriori (MAP) decoding.

Neural Reordering

We replaced DS features by our dependency-based neural
reordering classifier, in which we set the word vocabulary
to the 100,000 most frequent words in our parallel training
corpora, replacing other words with a special UNK token,
in addition to all POS tags, dependency labels, and Boolean
features. We set the embedding dimension size to 100, the
lower hidden layer dimension size to 200, and the upper hid-
den layer dimension size to 100. We trained for 100 epochs,
with 128 mini-batches per epoch, and used a dropout rate of
0.5. For model ensemble, we trained 10 classifiers for head-
child reordering and 10 for sibling reordering, each of which
forming one feature function.

Experimental Results

The translation quality of the system output is measured by
case-insensitive BLEU (Papineni et al. 2002), for which the
brevity penalty is computed based on the shortest reference
(NIST-BLEU)9. Statistical significance testing between sys-
tems is conducted by bootstrap resampling (Koehn 2004b).

Table 1 shows the experimental results. The distortion
limit of all the systems is set to 14. As shown in the ta-
ble, when the word embedding features are initialized using
dependency context (Bansal, Gimpel, and Livescu 2014),
which is our default scheme, our translation system with
single neural classifier is able to improve over our strong
baseline system (DBR+PBRM+DDP+DS) by +0.32 BLEU
point, while an ensemble model of 10 neural classifiers im-
proves over our baseline system by +0.57 BLEU point. The
results show that the neural reordering classifier is able to
replace the sparse dependency swap features and achieves
better performance.

In addition to the dependency-driven embedding initial-
ization scheme of (Bansal, Gimpel, and Livescu 2014), we
are also interested in testing other word embedding schemes.
Additional experiments use two other initialization schemes:
(1) random initialization and (2) the original skip-gram
model of (Mikolov et al. 2013) with a window size of 5.

LDC2010T17, and LDC2010T21.
9ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl
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Dataset

Baseline
Neural reordering classifier

Conventional Sparse dependency

DBR
DBR

DDP+DS
DBR+PBRM DDP+NR DBR+PBRM+DDP+NR

+PBRM +DDP+DS 10s-D 1s-D 10s-R 10s-S 10s-D

Dev 37.44 40.04 40.80 41.39 40.76 40.96 40.18 40.80 41.21

NIST02 37.23 39.19 39.96∗∗† 40.48∗∗†† 40.85∗∗†† 40.59∗∗†† 40.07∗∗†† 40.57∗∗†† 40.87∗∗††‡

NIST03 37.24 39.44 39.72∗∗ 40.88∗∗†† 40.75∗∗†† 41.11∗∗†† 40.15∗∗†† 40.67∗∗†† 41.46∗∗††‡‡

NIST04 37.66 40.26 40.04∗∗ 40.97∗∗†† 40.85∗∗†† 41.29∗∗††‡ 40.65∗∗† 41.00∗∗†† 41.70∗∗††‡‡

NIST05 37.32 39.65 39.34∗∗ 41.26∗∗†† 40.79∗∗†† 41.32∗∗†† 40.12∗∗ 41.37∗∗†† 41.56∗∗††

NIST06 36.15 38.70 37.79∗∗ 39.15∗∗† 39.25∗∗ 39.44∗∗††‡ 38.00∗∗ 39.46∗∗†† 39.95∗∗††‡‡

NIST08 28.47 30.11 29.57∗∗ 31.12∗∗†† 31.17∗∗†† 32.02∗∗††‡‡ 29.70∗∗ 31.28∗∗†† 31.76∗∗††‡‡

Average 35.68 37.89 37.74∗∗ 38.98∗∗†† 38.94∗∗†† 39.30∗∗†† 38.12∗∗†† 39.06∗∗†† 39.55∗∗††‡‡

Table 1: BLEU scores (%) of our neural reordering (NR) approach, either single system (1s) or 10-system ensemble (10s), with
different embedding initialization schemes, i.e., random (R), skip-gram (S), or dependency-driven (D). We used the following
prior reordering features as baseline: (1) distance-based reordering (DBR) (Koehn, Och, and Marcu 2003); (2) phrase-based re-
ordering models (PBRM), comprising phrase-based lexicalized reordering (Tillmann 2004; Koehn et al. 2005) and hierarchical
reordering (Galley and Manning 2008); (3) dependency distortion penalty (DDP) (Cherry 2008); and (4) sparse dependency
swap features (DS) (Hadiwinoto, Liu, and Ng 2016). Statistical significance testing compares our approach with DBR (∗: sig-
nificant at p < 0.05; ∗∗: significant at p < 0.01), with DBR+PBRM (†: significant at p < 0.05; ††: significant at p < 0.01),
and with DBR+PBRM+DDP+DS (‡: significant at p < 0.05; ‡‡: significant at p < 0.01).

As shown in Table 1, using dependency-driven embedding
initialization scheme yields the best improvement over our
baseline. On the other hand, random initialization of word
embedding yields worse results compared to our baseline,
showing a significant drop. Using the skip-gram word em-
bedding model yields average results comparable to the
baseline.

We are also interested in testing the performance of the
dependency-based reordering features in the absence of
the conventional phrase-based reordering models. Table 1
shows that the system with dependency distortion penalty
(DDP) and sparse dependency swap (DS) features is unable
to outperform the system with only conventional phrase-
based reordering models (DBR+PBRM). However, our neu-
ral classifier approach, without the conventional reordering
models, significantly outperforms the conventional reorder-
ing models by +1.05 BLEU point.

Discussion

Dependency swap features capture the dependency label and
POS tag of the two words to be reordered, but not the ac-
tual words themselves. While using words as sparse features
may result in too many parameters, the continuous word
representation in our neural approach alleviates this prob-
lem. In addition, the neural network model also learns use-
ful combinations of individual features. While dependency
swap features (Hadiwinoto, Liu, and Ng 2016) define fea-
tures as pairs of dependency label and POS tag, the hidden
layer of a NN can dynamically choose the information to
take into account for the reordering decision.

Using neural classifiers with dependency-based word
embedding initialization yields significant improvement,
whereas random initialization and skip-gram initialization of
word embeddings yield no improvement. This shows the im-
portance of capturing dependency information in the word

embeddings for reordering.
Figure 2 shows the baseline phrase-based SMT sys-

tem with conventional phrase-based reordering models
(DBR+PBRM) and sparse dependency swap features pro-
duces an incorrect translation output. The sparse depen-
dency swap features prefer the Chinese words “zhiyi (one
of)” and “zuzhi (organization)”, where “zhiyi” is the head
word of “zuzhi”, to remain in order after translation, based
on their dependency labels and POS tags. However, the Chi-
nese expression “NOUN zhiyi” should be swapped in the
English translation, resulting in “one of NOUN”10.

Our experimental results also show that without con-
ventional phrase-based reordering models, the sparse
dependency-based features are unable to outperform
the conventional reordering models, whereas the neural
dependency-based reordering model outperforms the con-
ventional reordering models. This further demonstrates the
strength of our dependency-based neural reordering ap-
proach.

Our approach applies syntax to SMT with beam search
decoding. This is different from prior approaches requir-
ing chart parsing decoding such as the hierarchical phrase-
based (Chiang 2007), tree-to-string (Liu, Liu, and Lin 2006),
string-to-tree (Marcu et al. 2006), and tree-to-tree (Zhai et al.
2011) SMT approaches.

The end-to-end neural MT (NMT) approach has recently
been proposed for MT. However, the most recent NMT pa-
pers tested on the same NIST Chinese-to-English test sets
(Wang et al. 2016; Zhang et al. 2016) show lower absolute
BLEU scores (by 2 to 7 points) compared to our scores. Fol-
lowing the approach of (Junczys-Dowmunt, Dwojak, and

10The ordering is further aggravated by wrongly swapping
“ISO” and “zuzhi (organization)”, due to the translation output
score being the weighted sum of features including LM, which
prefers such a translation.

113



Source sentence
ISO 是 目前 世界 上 两 大 国际 标准化 组织
之一 。
Reference translation:
ISO is one of the world’s two international
standardization organizations.
DBR+PBRM:
The two major International Organization for
Standardization (ISO is one of the world.
DBR+PBRM+DDP+DS:
The International Organization for Standardization
(ISO is one of the two in the world.
DDP+NR, DBR+PBRM+DDP+NR:
The ISO is one of the two major international
standardization organization in the world.

Figure 2: Left: a sample sentence and our translation output with distance-based reordering (DBR), phrase-based reorder-
ing models (PBRM), dependency distortion penalty (DDP), and sparse dependency swap (DS) features, compared to neural
reordering in a 10-system ensemble with dependency-driven embeddings (NR); Right: a source dependency parse tree.

Hoang 2016), our own implemented NMT system (single
system without ensemble), when trained on the same cor-
pora and tested on the same NIST test sets in this paper,
achieves an average BLEU score of 38.97, lower by 0.58
point compared to our best SMT system (p < 0.01). This
shows that our neural dependency-based reordering model
outperforms the NMT approach. NMT also requires longer
time to train (18 days) compared to our best SMT system (3
days).

Related Work

Phrase-based SMT reordering can utilize the dependency
parse of the input sentence. Chang et al. (2009) utilized
the traversed paths of dependency labels to guide phrase re-
ordering. Hadiwinoto, Liu, and Ng (2016) introduced a tech-
nique to determine the order of two translated words with
corresponding source words that are related through the de-
pendency parse during beam search. They defined sparse de-
coding features to encourage or penalize the reordering of
two words, based on the POS tag and dependency relation
label of each word, but not the words themselves.

Neural reordering models have been applied to re-rank
translation candidates generated by the translation decoder.
Li et al. (2014) introduced a recursive auto-encoder model to
represent phrases and determine the phrase orientation prob-
ability. Cui, Wang, and Li (2016) introduced long short-term
memory (LSTM) recurrent neural networks to predict the
translation word orientation probability. These approaches
did not use dependency parse and they were not applied di-
rectly during decoding.

Source dependency parse is also used in the pre-ordering
approach, which pre-orders words in a source sentence into
target word order and then translates the target-ordered
source sentence into the target language. While the pre-
ordering step typically utilizes a classifier with feature com-
binations (Lerner and Petrov 2013; Jehl et al. 2014), a
neural network can replace the classifier to avoid feature
combination. De Gispert, Iglesias, and Byrne (2015) intro-
duced a feed-forward neural network to pre-order the de-
pendency parse tree nodes (words). However, they did not

explore dependency-driven embeddings and model ensem-
ble. Miceli-Barone and Attardi (2015) treat pre-ordering as a
traversal on the dependency parse tree, guided by a recurrent
neural network. In these approaches, the translation possi-
bility is limited to one target ordering. In contrast, applying
a neural reordering model jointly with beam search allows
for multiple ordering alternatives and interaction with other
models, such as the phrase-based reordering models. We can
even build multiple neural models (ensemble) and assign a
different weight to each of them to optimize translation qual-
ity.

Our neural reordering classifier serves as a decoding fea-
ture function in SMT, leveraging the decoding. This is sim-
ilar to prior work on neural decoding features, i.e., neural
language model (Vaswani et al. 2013) and neural joint model
(Devlin et al. 2014), a source-augmented language model.
However, these features are not about word reordering.

While continuous representation of words is originally de-
fined for words (Mikolov et al. 2013), we also define contin-
uous representation for POS tags, dependency labels, and
indicator features. Extending continuous representation to
non-word features is also done in neural dependency parsing
(Chen and Manning 2014; Andor et al. 2016), which shows
better performance by using continuous feature representa-
tion over the traditional discrete representation.

Conclusion

We have presented a dependency-based reordering approach
for phrase-based SMT, guided by neural classifier predic-
tions. It shows that MT can be improved by a neural net-
work approach by not requiring explicit feature combination
and by using dependency-driven continuous word represen-
tation. Our experiments also show that our neural reorder-
ing approach outperforms our prior reordering approach em-
ploying sparse dependency-based features.
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